THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics

MATH 2050A Tutorial 4

1. Let $x_{n}:=1 / 1^{2}+1 / 2^{2}+\cdots+1 / n^{2}$ for each $n \in \mathbb{N}$. Show that $\left(x_{n}\right)$ is convergent.
2. (a) State the definition of Cauchy sequence.
(b) Let $x_{n}:=\sqrt{n}$ for $n \in \mathbb{N}$. Show directly from the definition that $\left(x_{n}\right)$ is not a Cauchy sequence.
3. Let $\left(x_{n}\right)$ be a contraction sequence of real numbers, that is, there exists a constant $C \in(0,1)$ such that

$$
\left|x_{n+2}-x_{n+1}\right| \leq C\left|x_{n+1}-x_{n}\right|
$$

for all $n \in \mathbb{N}$.
(a) Show that $\left(x_{n}\right)$ is Cauchy and hence convergent.
(b) Let $x_{1}:=2$ and $x_{n+1}:=2+1 / x_{n}$ for $n \geq 1$. Show that $\left(x_{n}\right)$ is contractive. Find the limit of $\left(x_{n}\right)$.
4. (a) Let $\left(x_{n}\right)$ be a sequence of real numbers. State the definition of properly divergent sequence : $\lim \left(x_{n}\right)=+\infty$ or $\lim \left(x_{n}\right)=-\infty$.
(b) Show that the sequence $\left(\sqrt{n^{2}+2}\right)$ is properly divergent .
(c) Show that if $\lim \left(a_{n} / n\right)=L$, where $L>0$, then $\lim \left(a_{n}\right)=+\infty$.

